
Delphi by Design

Introduction
Past Articles
Source Code

One-Step ActiveX - Part 2

by Ray Konopka
April/May 1998, Vol. 9, No. 1 -- Download Source Code: Click Here

It takes only one step to make a working ActiveX control from
a VCL control—but there may be some additional fussing to add
VCL-style design-time features like property editors.

Way back in the August/September 1997 issue, we began a three-part series
(Component Object Model) support in Delphi. Throughout the series, we saw
interface type in Delphi 3 plays an important role in supporting Microsoft’s
particular, we discovered how interfaces are used to manipulate objects, define
of automation servers, and implement Windows shell extensions.

In the last issue, all of the information from the previous three articles
together to describe the process of converting native Delphi components
controls. Delphi 3 provides a custom wizard that makes the initial conversion
easy. Just tell the wizard which component you would like to convert, and the
the rest. The process is so simple that it’s commonly referred to as “One-Step

Attaining one-step Ac-tiveX conversion in practice, however, requires
forethought. As we saw in the last issue, the ActiveX wizard does a good job
functional ActiveX control from a Delphi component. However, because of
differences between the Visual Component Library (VCL) and the ActiveX
framework, creating an ActiveX control that is functionally equivalent
component is not often possible. You can help the process along by following
that were introduced in the last issue, but these are not foolproof. The point
using the wizard to convert a component, it is often necessary to modify
ActiveX control manually.

In this issue, we’ll continue with the ListBoxX example that was introduced
column. However, this time, instead of focusing on runtime improvements to
we’re going to focus on enhancing the control’s design-time features. In particular,
discover how to provide the equivalent of property editors and component
ActiveX control (for example, drop-down list property editors and property
Wrapping up this article is a discussion of distribution and registration

Property Lists

Consider the ListBoxX control shown in Figure 1. An instance of ListBoxX has
onto a Visual Basic form. However, notice the Cursor and DragCursor properties
Property Inspector. Instead of the usual crDefault and crDrag values, we see
The TCursor type in Delphi is just an integer range, so when the ActiveX
converted the TListBox component, the cursor properties were treated just
integer properties. As a result, to change the cursor of the list box to an
must set the Cursor property to -11, which is the value of the crHourGlass
defined in the Controls unit. Not very inituitive, is it?

1 von 13 10.3.2000 22:39

Delphi By Design - One-Step ActiveX - Part 2 http://www.raize.com/DelphiByDesign/DbD49.htm

Figure 1: Changing cursors the hard way.

When using the TListBox component in Delphi, in addition to displaying a
instead of a number, the Object Inspector allows the user to display a drop-down
possible cursor values. Of course, the items in the list are symbolic names as
it be great if we could do the same thing in our ActiveX control? Well, we can—by
the GetPropertyString , GetPropertyStrings , and GetPropertyValue methods,
defined in the TActiveXControl class.

Listing 1 shows a partial listing of the ListBoxImpl unit. Recall from last time
an ActiveX control in Delphi involves creating a COM wrapper around a
component. In our example, TListBoxX is the COM wrapper, defined as a descendant
TActiveXControl . As a result, we can override the above methods within
class.

GetPropertyString is called whenever a property inspector displays a property.
this method, we are given the opportunity to provide a string representation
value. If you’ve written a property editor for a Delphi component before, you
similarity between GetPropertyString and TPropertyEditor.GetValue.

GetPropertyString is passed two parameters. The first is the dispid of the property
string representation is being requested. Because the same method is
properties of the control, we must filter out only the properties we want to
easily accomplished by writing a case statement on the dispid passed to the
determine which dispid maps to a particular property, look in the type library
For example, Listing 2 shows a partial listing for the DelphiByDesignXLib_TLB
interface unit. The mappings can be found in the IListBoxXDisp

The second parameter to GetPropertyString is a variable string parameter.
parameter to the string value to be displayed as the property value. In addition,
set the return value of the method to True. Returning False causes the property
to ignore the string parameter.

The GetPropertyString method in Listing 1 uses the Delphi CursorToString
convert the current property value into a symbolic name. Notice how the Get_Cursor
Get_DragCursor methods are used to access the current property

One more note with respect to GetPropertyString : There is a bug in the

2 von 13 10.3.2000 22:39

Delphi By Design - One-Step ActiveX - Part 2 http://www.raize.com/DelphiByDesign/DbD49.htm

Delphi that prevents the GetPropertyString method from being called. The
caused by an incomplete TActiveXControl.GetDisplayString method. Fortunately,
problem has been corrected in the 3.02 release of Delphi, which, by the
recommend getting. The improvements to the help files and examples alone
time that it takes to download and apply the patch from the Borland Web site.
these instructions assume that you have already upgraded to 3.01.

Okay, back to work. Implementing the GetPropertyString method will ensure that
name appears in the property inspector for both cursor properties. But what
drop-down list of all possible cursors? Both the GetPropertyStrings and GetPropertyValue
must be overridden to support a drop-down list. GetPropertyStrings is responsible
populating a string list with the values that will be displayed in the drop-down
the user selects one of the items from the list, the GetPropertyValue method
retrieve the actual property value. Although it sounds simple enough, there
subtleties that must be considered when overriding these two

Let’s look at GetPropertyStrings first. This method takes two parameters: a
string list. The dispid again identifies the property being manipulated, while
holds the values to be displayed in the drop-down list. In addition, the string
store a unique “cookie” value for each item in the list. When the user selects
the list, the corresponding cookie value is passed to the GetPropertyValue

To associate a cookie value with a particular string value in the list, add the
list by calling the Strings.AddObject method. In the string parameter, pass the
appear in the list for the entry. In the object parameter, pass a unique cookie
can be anything you choose. In our example, the cookie used in the cursor list
value itself. Note that you may have to typecast the cookie into a TObject to
call the AddObject method.

When the user selects an item from the drop-down list, the GetPropertyValue
called and is passed three parameters. The first is our good friend the
property. The second is the cookie value corresponding to the item chosen. And
a variant that represents the property value. The processing of this method is
For the selected property, set the variant to the property value corresponding
cookie value passed in the second parameter. In our example, we just assign
value to the variant.

Once these three methods are defined, all we need to do is rebuild the library
out the control. Figure 2 shows a more user-friendly property inspector for
control, at least in terms of the cursor properties.

3 von 13 10.3.2000 22:39

Delphi By Design - One-Step ActiveX - Part 2 http://www.raize.com/DelphiByDesign/DbD49.htm

Figure 2: Selecting a new cursor from a list.

Predefined Property Pages

Take a closer look at the property inspector in Figure 1. Notice that the Items
absent from the list. Where is it? The ListBoxX control does have an Items
simply not published. Therefore, the only way to populate the ListBoxX control
the Items property at runtime. Fortunately, Delphi provides a way to access
property at design-time by using a predefined property page.

Property pages are very similar to Delphi component editors in that you can use
page to edit multiple properties of an ActiveX control. Property pages are
property editors in that you can have multiple property pages per ActiveX
provides four predefined property pages that you can associate with your ActiveX
Each page has a corresponding Class ID, which is declared in the AxCtrls unit.
each ID and describes the functionality of each page.

These predefined property pages are designed in such a way that they can
any ActiveX control. Each property page uses runtime type information (RTTI)
which properties in the control can be edited using the property page and then
property name to a combo box. This way, a single property page can edit any
properties that fall into one of these four types. Figure 3 shows the Strings
being used to edit the Items property of a ListBoxX control.

4 von 13 10.3.2000 22:39

Delphi By Design - One-Step ActiveX - Part 2 http://www.raize.com/DelphiByDesign/DbD49.htm

Figure 3: Using a predefined property page.

To associate a predefined property page with your ActiveX control, simply
DefinePropertyPage in your control’s DefinePropertyPages method. For example,
shows how the string and font property pages are associated with the ListBoxX

Custom Property Pages

In addition to using predefined property pages, you can construct your
property pages to be used on your ActiveX control. To create a new property
File|New, switch to the ActiveX page, and select the Property Page item. Delphi
a form file and unit that represent the property page. Listing 3 shows the source
the TabWidthPpg property page unit. Notice that TPpgTabWidth descends
TPropertyPage , which in turn descends from TCustomForm. Therefore, you
property page just like a normal Delphi form.

For the ListBoxX control, I decided to create a property page that allows users
adjust the TabWidth property. Figure 4 shows the property page in action.

5 von 13 10.3.2000 22:39

Delphi By Design - One-Step ActiveX - Part 2 http://www.raize.com/DelphiByDesign/DbD49.htm

Figure 4: The custom TabWidth property page.

As mentioned earlier, the notion of a property page is very similar to that of a
property editor or a component editor in Delphi. However, there are some key
between the two. First, you don’t have to worry about placing OK and Cancel
the page. Because multiple property pages may exist for a control, all property
displayed on separate tabs within a PageControl. The environment invoking
pages is responsible for supplying the OK, Cancel, and Apply buttons.

Second, the caption of a property page form supplies the text used
environment to identify the page. Notice in Figure 4 that the current tab
Width”.

Next, you need to add code to the property page unit that will update the components
the property page form with the data stored in the ActiveX control.
UpdatePropertyPage method is automatically defined for just this purpose.
TPpgTabWidth.UpdatePropertyPage method, which appears in Listing 3 , populates
LstPreview list box with the strings stored in the ActiveX control. Next, the checkbox
and the TabWidth property are initialized.

Once the property page is invoked, we must be able to update the ActiveX
the new values selected in the property page. This is accomplished by completing
UpdateObject method, which is also automatically generated by
TPpgTabWidth.UpdateObject method simply sets the TabWidth property of
control to the TabWidth setting of the preview list.

It is important to note that OleObject represents the ActiveX control
underlying Delphi component. Therefore, the methods and properties defined
control must be used to transfer data.

Before a property page can be invoked on an ActiveX control, you must
property page with the control. This is accomplished by adding a
DefinePropertyPages method in the wrapper class for your ActiveX control.
property page that you want to associate with the control, you make
DefinePropertyPage and pass it the class ID of the property page. Delphi
generates a GUID for new property pages and assigns it to a constant that
to DefinePropertyPage . The constant is declared in the property page
DefinePropertyPages method in Listing 1 associates the PpgTabWidth property
the ActiveX control. Don’t forget to add the property page unit to the uses

6 von 13 10.3.2000 22:39

Delphi By Design - One-Step ActiveX - Part 2 http://www.raize.com/DelphiByDesign/DbD49.htm

implementation unit.

One final word regarding property pages: If you add a custom property page
server that has already been registered, the new property page will not be accessible
you re-register the ActiveX server. Simply compiling the library to generate a
is not sufficient. You must register the server again so that Windows becomes
property page.

Distributing ActiveX Controls

There are a couple of issues involved in distributing ActiveX controls. First
you must distribute the *.ocx file that contains your ActiveX controls. If you
build your ActiveX library project using runtime packages, you will also need to
of the runtime packages required by your component.

If you instruct the ActiveX control wizard to generate a design-time license
ActiveX control, you will also need to distribute the corresponding

If you deploy an ActiveX control library that uses the IStrings interface or the
font, color, strings, or picture property pages, then you must also deploy the
type library, which comes in two forms: the StdVcl32.dll library, and a standalone
library called StdVcl32.tlb. Both files are located in the Windows System
example, C:\WinNT\System32) after Delphi 3 is installed.

Control libraries that use the predefined property pages must deploy StdVcl32.dll.
if the ActiveX controls only use the IStrings interface, the StdVcl32.tlb type
deployed instead. Regardless of which file is deployed, the file must be registered
system registry, just like the ActiveX control library.

The Turbo Register Server Utility

The system registry can be updated with the information needed to support
control by using the Turbo Register Server (TRegSvr) utility provided as a demo
in Delphi. The project is located in the Demos\ActiveX\TRegSvr directory beneath
Delphi 3 installation directory. Of course, before you’ll be able to use the
need to compile it.

TRegSvr has a simple command-line interface. After the program name, you
of options followed by the file to register. The file can be an ActiveX server
library. The default action is to register the specified file. The -u option
unregister the specified file. The -t option is used to indicate that the
contained in the specified file should be registered. This option is not needed if
file ends in “.tlb”. The -q option instructs the TRegSvr program to operate
by not displaying any output. This option makes TRegSvr ideal to execute
installation programs.

For the examples presented earlier, the following calls to TRegSvr handle registering
TListBoxX ActiveX control with the system:

TRegSvr -q DelphiByDesignXLib.ocx
TRegSvr -q StdVcl32.dll

On the Drawing Board

Next time, Visual Developer Magazine celebrates its 50th issue. Ever since
Pascal” column (the precursor to “Delphi by Design”) first appeared in PC Techniques
ago, I have received quite a bit of feedback. Some of the messages were simply
Others asked where the source code from the column could be found. But by
common questions asked were about Delphi programming techniques. That
questions.

7 von 13 10.3.2000 22:39

Delphi By Design - One-Step ActiveX - Part 2 http://www.raize.com/DelphiByDesign/DbD49.htm

For example, the following is a typical message: “Hi, Ray. I read your column
Your article on <some topic> was excellent. However, I’ve run into a programming
that I’m hoping you’ll be able to help me with. How do I <some task> in Delphi?”
maybe I exaggerated the tone of the first two sentences.

The point is that I receive a lot of good questions, and because many of the same
keep coming up, I have often wanted to incorporate a topic or two in
Unfortunately, I never have any extra room in my column. Therefore, the next
“Delphi by Design” will not have a single topic. Instead, I’m putting together
topics based on questions that I have received. v

Copyright © 1998 The Coriolis Group, Inc. All rights reserved.

Listing 1 - ListBoxImpl.src

unit ListBoxImpl;

interface

uses
 Windows, ActiveX, Classes, Controls, Graphics, Menus, Forms, StdCtrls,
 ComServ, StdVCL, AXCtrls, DelphiByDesignXLib_TLB;

type
 TListBoxX = class(TActiveXControl, IListBoxX)
 private
 { Private declarations }
 FDelphiControl: TListBox;
 . . .
 protected
 { Protected declarations }
 procedure InitializeControl; override;
 procedure EventSinkChanged(const EventSink: IUnknown); override;

 procedure DefinePropertyPages(DefinePropertyPage:
 TDefinePropertyPage); override;

 function GetPropertyString(DispID: Integer;
 var S: string): Boolean; override;
 function GetPropertyStrings(DispID: Integer;
 Strings: TStrings): Boolean; override;
 procedure GetPropertyValue(DispID, Cookie: Integer;
 var Value: OleVariant); override;

 { Methods that support properties }
 . . .
 end;

implementation

uses
 TabWidthPpg, AboutListBox, SysUtils;

{ TListBoxX }

procedure TListBoxX.DefinePropertyPages(

8 von 13 10.3.2000 22:39

Delphi By Design - One-Step ActiveX - Part 2 http://www.raize.com/DelphiByDesign/DbD49.htm

 DefinePropertyPage: TDefinePropertyPage);
begin
 { Associate Predefined Property Pages with this control }
 DefinePropertyPage(Class_DStringPropPage);
 DefinePropertyPage(Class_DFontPropPage);

 { Associate a Custom Property Page with this control }
 DefinePropertyPage(Class_PpgTabWidth);
end;

function TListBoxX.GetPropertyString(DispID: Integer;
 var S: string): Boolean;
begin
 case DispID of
 5: // 5 = DispID for DragCursor property in IListBoxXDisp
 begin
 S := CursorToString(Get_DragCursor);
 Result := True;
 end;

 26: // 26 = DispID for Cursor property in IListBoxXDisp
 begin
 S := CursorToString(Get_Cursor);
 Result := True;
 end;

 else
 Result := False;
 end;
end;

function TListBoxX.GetPropertyStrings(DispID: Integer;
 Strings: TStrings): Boolean;
var
 I: Integer;
 Cookie: Integer;
 TempList: TStringList;
begin
 case DispID of
 5, // 5 = DispID for DragCursor property in IListBoxXDisp
 26: // 26 = DispID for Cursor property in IListBoxXDisp
 begin
 TempList := TStringList.Create;
 try
 GetCursorValues(TempList.Append);
 for I := 0 to TempList.Count - 1 do
 begin
 Cookie := StringToCursor(TempList[I]);
 Strings.AddObject(TempList[I], TObject(Cookie));
 end;
 finally
 TempList.Free;
 end;
 Result := True;
 end;
 else
 Result := False;
 end;
end;

9 von 13 10.3.2000 22:39

Delphi By Design - One-Step ActiveX - Part 2 http://www.raize.com/DelphiByDesign/DbD49.htm

procedure TListBoxX.GetPropertyValue(DispID, Cookie: Integer;
 var Value: OleVariant);
begin
 case DispID of
 5, // 5 = DispID for DragCursor property in IListBoxXDisp
 26: // 26 = DispID for Cursor property in IListBoxXDisp
 begin
 { Cookie represents the item that was selected }
 Value := Cookie;
 end;
 end;
end;

{= All other support methods deleted for space =}

initialization
 TActiveXControlFactory.Create(ComServer, TListBoxX, TListBox,
 Class_ListBoxX, 1, '{B19A64E4-644D-11D1-AE4B-444553540000}', 0);

end.

Listing 2 - DelphiByDesignXLib_TLB.src

unit DelphiByDesignXLib_TLB;

{ This file contains pascal declarations imported from a type library.
 This file will be written during each import or refresh of the type
 library editor. Changes to this file will be discarded during the
 refresh process. }

{ DelphiByDesignXLib Library }
{ Version 1.0 }

interface

uses Windows, ActiveX, Classes, Graphics, OleCtrls, StdVCL;

const
 LIBID_DelphiByDesignXLib: TGUID =
 '{B19A64DB-644D-11D1-AE4B-444553540000}';

const
{ Component class GUIDs }
 Class_ListBoxX: TGUID = '{B19A64DE-644D-11D1-AE4B-444553540000}';

type
{ Forward declarations: Interfaces }
 IListBoxX = interface;
 IListBoxXDisp = dispinterface;
 IListBoxXEvents = dispinterface;

{ Forward declarations: CoClasses }
 ListBoxX = IListBoxX;

{ Forward declarations: Enums }
 TxBorderStyle = TOleEnum;
 TxDragMode = TOleEnum;
 TxImeMode = TOleEnum;

10 von 13 10.3.2000 22:39

Delphi By Design - One-Step ActiveX - Part 2 http://www.raize.com/DelphiByDesign/DbD49.htm

 TxListBoxStyle = TOleEnum;
 TxMouseButton = TOleEnum;

{ Dispatch interface for ListBoxX Control }

 IListBoxX = interface(IDispatch)
 ['{B19A64DC-644D-11D1-AE4B-444553540000}']
 function Get_DragCursor: Smallint; safecall;
 procedure Set_DragCursor(Value: Smallint); safecall;
 . . .
 function Get_Cursor: Smallint; safecall;
 procedure Set_Cursor(Value: Smallint); safecall;
 . . .
 procedure AboutBox; safecall;
 . . .
 property DragCursor: Smallint
 read Get_DragCursor write Set_DragCursor;
 . . .
 property Cursor: Smallint read Get_Cursor write Set_Cursor;
 end;

{ DispInterface declaration for Dual Interface IListBoxX }

 IListBoxXDisp = dispinterface
 ['{B19A64DC-644D-11D1-AE4B-444553540000}']
 property BorderStyle: TxBorderStyle dispid 1;
 property Color: TColor dispid 2;
 property Columns: Integer dispid 3;
 property Ctl3D: WordBool dispid 4;
 property DragCursor: Smallint dispid 5;
 property DragMode: TxDragMode dispid 6;
 property Enabled: WordBool dispid 7;
 property ExtendedSelect: WordBool dispid 8;
 property Font: Font dispid 9;
 property ImeMode: TxImeMode dispid 10;
 property ImeName: WideString dispid 11;
 property IntegralHeight: WordBool dispid 12;
 property ItemHeight: Integer dispid 13;
 property Items: IStrings dispid 14;
 property MultiSelect: WordBool dispid 15;
 property ParentColor: WordBool dispid 16;
 property ParentCtl3D: WordBool dispid 17;
 property Sorted: WordBool dispid 18;
 property Style: TxListBoxStyle dispid 19;
 property TabWidth: Integer dispid 20;
 property Visible: WordBool dispid 21;
 procedure Clear; dispid 22;
 property ItemIndex: Integer dispid 23;
 property SelCount: Integer readonly dispid 24;
 property TopIndex: Integer dispid 25;
 property Cursor: Smallint dispid 26;
 procedure AboutBox; dispid -552;
 end;

{ Events interface for ListBoxX Control }

 IListBoxXEvents = dispinterface
 ['{B19A64DD-644D-11D1-AE4B-444553540000}']
 procedure OnClick; dispid 1;
 procedure OnDblClick; dispid 2;
 procedure OnKeyPress(var Key: Smallint); dispid 3;
 procedure OnColorItem(Index: Integer;

11 von 13 10.3.2000 22:39

Delphi By Design - One-Step ActiveX - Part 2 http://www.raize.com/DelphiByDesign/DbD49.htm

 var Color: TColor); dispid 4;
 end;

implementation

end.

Listing 3 - TabWidthPpg.pas

unit TabWidthPpg;

interface

uses
 SysUtils, Windows, Messages, Classes, Graphics, Controls,
 StdCtrls, ExtCtrls, Forms, ComServ, ComObj, StdVcl, AxCtrls,
 ComCtrls;

type
 TPpgTabWidth = class(TPropertyPage)
 GrpPreview: TGroupBox;
 GrpTabWidth: TGroupBox;
 LstPreview: TListBox;
 ChkUseTabs: TCheckBox;
 TrkTabWidth: TTrackBar;
 procedure ChkUseTabsClick(Sender: TObject);
 procedure TrkTabWidthChange(Sender: TObject);
 private
 { Private declarations }
 protected
 procedure UpdatePropertyPage; override;
 procedure UpdateObject; override;
 public
 { Public declarations }
 end;

const
 Class_PpgTabWidth: TGUID =
 '{8BE91420-9070-11D1-AE4B-44455354616F}';

implementation

{$R *.DFM}

procedure TPpgTabWidth.UpdatePropertyPage;
var
 I: Integer;
begin
 { Update your controls from OleObject }

 { Copy strings from control into preview list box }
 for I := 0 to OleObject.Items.Count - 1 do
 LstPreview.Items.Add(OleObject.Items[I]);

 ChkUseTabs.Checked := OleObject.TabWidth > 0;
 TrkTabWidth.Position := OleObject.TabWidth div 4;
 LstPreview.TabWidth := OleObject.TabWidth;
end;

procedure TPpgTabWidth.UpdateObject;

12 von 13 10.3.2000 22:39

Delphi By Design - One-Step ActiveX - Part 2 http://www.raize.com/DelphiByDesign/DbD49.htm

begin
 { Update OleObject from your controls }
 OleObject.TabWidth := LstPreview.TabWidth;
end;

procedure TPpgTabWidth.ChkUseTabsClick(Sender: TObject);
begin
 TrkTabWidth.Enabled := ChkUseTabs.Checked;
 if ChkUseTabs.Checked then
 LstPreview.TabWidth := TrkTabWidth.Position * 4
 else
 LstPreview.TabWidth := 0;
end;

procedure TPpgTabWidth.TrkTabWidthChange(Sender: TObject);
begin
 Modified;
 LstPreview.TabWidth := TrkTabWidth.Position * 4;
end;

initialization
 TActiveXPropertyPageFactory.Create(
 ComServer, TPpgTabWidth, Class_PpgTabWidth);
end.

13 von 13 10.3.2000 22:39

Delphi By Design - One-Step ActiveX - Part 2 http://www.raize.com/DelphiByDesign/DbD49.htm

